

Idaho National Engineering and Environmental Laboratory

Recent Studies with the World's Largest Matched-Index-of-Refraction (MIR) Flow System

Idaho National Engineering and Environmental Laboratory (INEEL)
Idaho Falls, Idaho 83415-3885

Objective ≈ obtain basic and applied measurements of complicated internal and/or external fluid physics for

- Extending fundamental knowledge of generic flow processes
- Assessment of proposed CFD codes
- Guidance for improving CFD codes, e.g., turbulence models

<u>Technique</u> = optical fluid measurements (LDV, PTV) with transparent models using refractive-index matching

- ETSci Advisory Committee recommended a central test facility for
 - Complex turbulent flows
 - Flows in porous media
 - Two-phase particulate flows

using refractive-index-matching techniques

- → INEEL MIR flow system = World's largest
- Advantages
 - Versatile internal/external flows, basic/applied research
 - Non-intrusive measurements
 - Good spatial and temporal resolution
 - Benchmark data
- Is an excellent user facility
- Applications from micro-scale to building scale

Topics

- Benefits of refractive-index-matching for optical flow measurements
- Characteristics and advantages of INEEL MIR flow system
- Recent and current experiments
- Potential interactions with INEEL
- Concluding remarks

Contacts:

INEEL Physics Dept. manager = Richard N. Wright, 208-526-6127 (rnw2@inel.gov)

INEEL technical leader = Donald M. McEligot, 208-526-2881 (dm6@inel.gov)

INEEL program manager = Keith G. Condie, 208-526-9383 (kgc@inel.gov)

Laser Doppler Velocimetry (LDV)

Prism-system with fixed beam separation [Durst and Whitelaw, 1971]

Fringe model [Rudd, 1969]

Signal

3-D Particle Tracking Velocimetry (PTV)

[Guezennec, Brodkey, Trigui and Kent, 1994]

- Characterize global velocity field in apparatus
- Map path lines of particles
- Deduce mixing of passive scalars (e.g., colloidal particles)

PTV in Annulus

Particle Tracking Technique

How does refractive-index-matching help?

- Optical techniques avoid disturbing the flow to be measured
- Typical approaches are LDV, PIV, PTV, flow visualization, PLIF, etc.

Snell's Law

Unless the refractive indices are matched, the view may be distorted or impossible even with "transparent" materials and position measurements may be incorrect

Example of application of refractive-index-matching

Refractive index not matched

Benefits of INEEL MIR flow system

Most previous MIR experiments have been cm-scale; INEEL test section is about 0.6 m x 0.6 m x 2.5 m

Example of application of refractive-index-matching

Apparatus to study fluid physics phenomena in idealized SNF canister for EM Science project

Advantages

- Versatile basic/applied research, internal / external / coupled flows
- Non-intrusive, undistorted measurements of flow and transport
- μ -scale to building scale experience
- Good spatial and temporal resolution
- Benchmark measurements

The Large INEEL MIR Flow System

MIR Test Section [Stoots et al., Exp. Fluids, 2001]

Recent and current collaboration

Prof. F. Durst, Uni. Erlangen, Germany

Structure of transitional flow*

DoE EM Science program

Fundamental flow in SNF canisters*

DoE NERI program

Fundamental thermal fluid physics of advanced reactors*

Bechtel R&D

Flows around buildings

Prof. R. S. Budwig, U. Idaho

Basic measurements of transitional and turbulent

flows with favorable pressure gradients*

DoE/Korea I-NERI program

Advanced computational thermal fluid physics

and its assessment

Prof. D. R. Smith, U. Wyoming

Structure of transient synthetic jet flows*

DoE EM Science program

Multiphase flow in complex fracture apertures*

^{*} Basic research -- addressing science issues

Recent and Current Experiments

Realistic rough surfaces in turbomachinery

Schematic diagram of typical internal flow experiment

Temperatures of main flow and flow through the model are controlled independently to match the refractive indices of the fluid and transparent model

Reynolds stress development in a transitioning boundary layer

Fundamental question = How does the turbulent contribution evolve in a transitional boundary layer?

User = Lehrstuhl für Strömungsmechanik, Uni. Erlangen 1998-2001

Ref: Becker, S., C. M. Stoots, K. G. Condie, F. Durst and D. M. McEligot, 2002. LDA-measurements of transitional flows induced by a square rib. *J. Fluids Engr.*, <u>124</u>, pp. 108-117.

Stoots, C., S. Becker, K. Condie, F. Durst and D. M. McEligot, 2001. A large-scale matched index-of-refraction flow facility for LDA studies around complex geometries. *Exp. Fluids*, <u>30</u>, pp 391-398.

Measurements of fundamental fluid physics of SNF storage canisters

Objective = obtain fundamental measurements of generic flow phenomena occurring during drying applications

Customer = DoE EM Science program, 1997-2001

Collaboration = Prof. J. C. Crepeau, U. Idaho (PI), Prof. R. S. Brodkey and Y. G. Guezennec, Ohio State and Dr. R. C. Clarksean, Leading Technology Designs

Computational and physical modeling collaboration for DARPA Chem/Bio program application

Objective = obtain measurements to assess CFD models for simulation of flow around buildings, particularly separated flow regions Customer = Bechtel R&D group via CFRD program, 2000-2001

Trailing eddy downstream of model

Products:

- Excel files of velocity and turbulence distributions
- Videos of flow visualization
- Knight, K. J., et al., 2002. ASME paper IMECE-2002-34451.

Fundamental thermal fluid physics of high temperature flows in advanced reactor systems

Objective = provide fundamental thermal fluid physics knowledge and measurements necessary for the development of improved predictive methods for application to high temperature flows for advanced reactor systems (primarily GCHTRs)

Customer = DoE NERI program, 1999-2002

Gas Temperature Range (K)		
GT-MHR	573	1873
HTTR	673	1873
GC-FBR	723	1323
Fusion blanket	563	973

Emphases =

- Complex geometries
- Gas property variation

Tasks/Participants/Organizations

HT/FF in advanced reactors Drs. Arkal Shenoy and

Guido Baccaglini / GA

Measurements for complex Donald M. McEligot,

Keith G. Condie, Glenn E. McCreery geometries

and Robert J. Pink / INEEL

LES development Prof. Richard H. Pletcher / Iowa State U.

DNS development Profs. Shin-ichi Satake / Toyama U. and

Tomoaki Kunugi / Kyoto U.

Multi-sensor probe development Profs. James M. Wallace and

Petar Vukoslavcevic / U. Maryland

Measurements for buoyancy and gas property variation

Prof. J. Derek Jackson / U. Manchester

INEEL – Experiment for Assessment of Computer Codes for Complex Reactor Flow Phenomena

Streamwise mean velocity measurements by LDV

Axial profiles

Decelerating region

Accelerating region

Ref: McCreery, G. E., R. J. Pink, K. G. Condie, 2003. Fluid dynamics of ribbed annuli. NuReth-10 paper J00203, Seoul, October.

Preliminary flow visualization for exit convergence

Typical streak-line visualization

Deduced streamlines

Key results of collaborations

- 13 archival papers published or in press
- 35 conference publications
- 13 invited presentations
- 31 publications and presentations on other topics

Related to this NERI project

Boundary layers on turbine blades with rough surfaces

Objective = conduct basic measurements that will reveal the influences of realistic surface roughness on the near-wall behavior of the boundary layer

User = U.Idaho for AFOSR/D-EPSCoR project, doctoral thesis, 2000-2003

Phase I: Smooth plate, II. Distributed roughness, III. Realistic roughness

McIlroy, H. M., R. S. Budwig and D. M. McEligot, 2003. Scaling of turbine blade roughness for model studies. ASME paper INECE-2003-42167.

Multiphase flow in complex fracture apertures under a wide range of flow conditions [P. Meakin, G. E. McCreery and D. M. McEligot, INEEL]

Objective = by coordinating physical and computer modeling, develop new conceptual models to understand how pollutants travel in the vadose (unsaturated gas-liquid) zone

Customer = DoE EM Science program, 2002-2005 Collaboration = Prof. D. Rothman, MIT, Profs. B. Jamtveit and J. Feder, U. Oslo

Small-scale demonstration of transient phase displacement in a porous medium by MIR [McCreery, INEEL, 2001]

Advanced computational thermal fluid physics and its assessment for light water reactors (LWRs) and supercritical reactors (SCRs)

Objective = develop fundamental knowledge needed for improved predictive techniques in LWR and SCR applications
Funding = DoE US/RoK I-NERI program, 2001-2005

→ Complex geometries!

Project tasks

INEEL role = MIR experiments for assessment of predictive codes for flow through complex reactor geometries

Design of model installation in MIR test section

Model cross section

Model assembled as it should appear in MIR test section with refractive indices matched

Some publications:

Bae, J. H., J. Y. Yoo and H. Choi, 2003. Direct numerical simulation of heat transfer to CO₂ at supercritical pressure in a vertical tube. NuReTH-10, Seoul, 5-9 October.

Jackson, J. D., K. O. J. Evans Lutterodt and R. Weinberg, 2003. Experimental studies of buoyancy-influenced convective heat transfer in heated vertical tubes at pressures just above and just below the thermodynamic critical value. Paper 1177, GENES4/ANP2003, Kyoto, 15-19 September.

Moro, J. P., P. V. Vukoslavcevic and V. Blet, 2003. A method to calibrate a hot-wire X-probe for applications in low-speed, variable temperature flow. *Meas. Sci. Technol.*, <u>14</u>, pp. 1054-1062.

You, J., J. Y. Yoo and H. Choi, 2003. Direct numerical simulation of heated vertical air flows in fully developed turbulent mixed convection. *Int J. Heat Mass Transfer*, <u>46</u>, No. 9 (April), pp. 1613-1627.

Annual technical report:

McEligot, D. M. et al., 2002. INEEL/EXT-2002-1386, 10 December.

Potential Interactions with INEEL

- Collaborative faculty projects in INEEL mission areas
- Faculty collaborative research proposals
- Faculty sabbatical leaves
- Doctoral dissertations
- Training students -- participation in ongoing experiments
- Training post doctoral associates
- Fluid mechanics conferences and workshops on topical areas
- Modification of facility to expand capabilities of interest
- Advisory committees

Concluding Remarks

- The large MIR system is a versatile, useful tool for examining flows in complicated situations
- Results are being published and presented in engineering science venues
- Teaming is a normal mode of operation for INEEL
- The MIR system can provide valuable information for the development of basic knowledge in
- The MIR system as an INEEL User Facility is valuable for collaboration with
 - Fluid dynamicists and convective thermal scientists from
 - Universities, industry and other laboratories